a2 United States Patent

Janarthanan et al.

US009461901B2

US 9,461,901 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR DETECTION
OF ELEPHANT FLOWS

Applicant: DELL PRODUCTS L.P., Round Rock,
X (US)

Inventors: Kesava Vijaya Krupakaran

Janarthanan, TamilNadu (IN); Balaji

Venkat Venkataswami, TamilNadu

(IN)

DELL PRODUCTS L.P., Round Rock,
TX (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 33 days.

Appl. No.: 14/510,675

Filed: Oct. 9, 2014

Prior Publication Data

US 2016/0105343 Al Apr. 14, 2016

Int. CL.

HO4L 12/28 (2006.01)

HO4L 12/26 (2006.01)

HO4L 12/741 (2013.01)

U.S. CL

CPC HO4L 43/0876 (2013.01); HO4L 43/50

(2013.01); HO4L 45/74 (2013.01)
Field of Classification Search

CPC ... HOAL 47/10, HO4L 47/30, HO4L 47/11;
HOAL 47/12; HOAL 47/35; HO4L 47/32;
HO4L 47/215; HO4L 47/20; HO4L 12/5602;
HOAL 47/21
USPC 370/229, 235, 235.1, 236, 250, 360,
370/396, 386, 389

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,020,802 B1* 4/2015 Florissiccoeenvn. GOG6F 9/445
703/22

9,055,076 B1* 6/2015 Sorenson, III HO4L 67/1008
2003/0074467 Al* 42003 Oblak ... HO4L 67/1002
709/238

2004/0093415 Al* 5/2004 Thomas HO4L 67/1029
709/227

2007/0016681 Al* 1/2007 Suzuki GOG6F 3/0617
709/227

2011/0051733 Al1* 3/2011 Hirataccoo.e. HO4L 49/10
370/400

2014/0237118 Al1* 82014 Matthews HO4L 47/2441
709/226

* cited by examiner

Primary Examiner — Brenda H Pham
(74) Attorney, Agent, or Firm — Haynes & Boone, LLP

(57) ABSTRACT

A system and method for detection of elephant flows
includes a switching device. The switching device includes
one or more ports, a memory, and a control unit coupled to
the ports and the memory. The control unit is configured to
detect storage locations information included in one or more
first messages. The storage locations information identifies a
storage node and is forwarded to a computing device. The
control unit is further configured to detect opening of a
connection between the computing device and the storage
node based one or more second messages received for
forwarding on one or more of the ports and determine
identifying characteristics of an elephant flow based on
information associated with the connection. In some
embodiments, the control unit is further configured to for-
ward network packets using an altered forwarding strategy
when the network packets are associated with the elephant
flow.

19 Claims, 4 Drawing Sheets

100

N Client 160

Edge Switch 170

Network 140

| Edge Switch 151 | Edge Switch 152 | sew | Edge Switch 159 |

v

A N—

Name Data
Node Node
120 131

Data Data |
Node LR Node |
132 139 |

Lt HDF5 110 |

U.S. Patent Oct. 4, 2016 Sheet 1 of 4 US 9,461,901 B2

100
\ Client 160
Edge Switch 170
Network 140
Edge Switch 151 Edge Switch 152 seoe Edge Switch 159
I Name Data Data Data I
| Node Node Node soe Node I
| 120 131 132 139 I
- — _ __ __ _ _toes10 |

U.S. Patent Oct. 4, 2016 Sheet 2 of 4 US 9,461,901 B2

200 \,
205 — A client makes a storage request to a name node
A}
210 — The name node validates the request and replies
15 — The client requests storage Ioca‘tli‘ons information from the name
node
A}
220 — The name node responds with the storage locations information
L
225 — The client opens a connection with a first data node
L
230 — The client transfers data to the first data node
A}
235 — The client closes the connection with the first data node

L

The client transmits storage locations information for a |E

240 replication to the first data node
A

245 —-] The first data node opens a connection with a second data node
4

250 — The first data node transfers data to the second data node
L

55 — The first data node closes the connection with the second data

node
l

FIG. 2

U.S. Patent Oct. 4, 2016 Sheet 3 of 4 US 9,461,901 B2

300
\

310 —| Detect storage locations information
L

320 Detect opening of a connection
L

330 —| Notify other devices of an elephant flow
L

340 Configure for the elephant flow
L

350 —| Forward data for the elephant flow
L

360 Detect closing of the connection
L

370 —— Note end of the elephant flow

FIG. 3

U.S. Patent

Oct. 4,

2016 Sheet 4 of 4 US 9,461,901 B2

Storage Device
440

Block 450

Computing Device 400

K

Memory 420
Control Unit 410
K—31 | Application
430
7K

|—|>l1—|/ 450

FIG. 4

US 9,461,901 B2

1

SYSTEM AND METHOD FOR DETECTION
OF ELEPHANT FLOWS

BACKGROUND

The present disclosure relates generally to information
handling systems, and more particularly to detection of
elephant flows in networks.

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option is an information han-
dling system (IHS). An IHS generally processes, compiles,
stores, and/or communicates information or data for busi-
ness, personal, or other purposes. Because technology and
information handling needs and requirements may vary
between different applications, IHSs may also vary regard-
ing what information is handled, how the information is
handled, how much information is processed, stored, or
communicated, and how quickly and efficiently the infor-
mation may be processed, stored, or communicated. The
variations in IHSs allow for IHSs to be general or configured
for a specific user or specific use such as financial transac-
tion processing, airline reservations, enterprise data storage,
or global communications. In addition, IHSs may include a
variety of hardware and software components that may be
configured to process, store, and communicate information
and may include one or more computer systems, data storage
systems, and networking systems.

Additionally, some embodiments of information handling
systems include non-transient, tangible machine-readable
media that include executable code that when run by one or
more processors, may cause the one or more processors to
perform the steps of methods described herein. Some com-
mon forms of machine readable media include, for example,
floppy disk, flexible disk, hard disk, magnetic tape, any other
magnetic medium, CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with
patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, and/or any
other medium from which a processor or computer is
adapted to read.

Computer networks form the interconnection fabric that
enables reliable and rapid communications between com-
puter systems and data processors that are in both close
proximity to each other and at distant locations. These
networks create a vast spider web of intranets and internets
for handling all types of communication and information.
Making all of this possible is a vast array of network
switching products that make forwarding decisions in order
to deliver packets of information from a source system or
first network node to a destination system or second network
node. Due to the size, complexity, and dynamic nature of
these networks, sophisticated network switching products
are often required to continuously make forwarding deci-
sions and to determine the best routes and/or ways to
forward network traffic in a network. As the nodes in the
network place changing demands on the network switching
products and the network, by requesting the forwarding of
different types of network of varying sizes, it may be
advantageous for the network switching products to adjust
the ways that different packets of network traffic are
handled. For example, the network switching products may
be tasked with forwarding a large quantity or bandwidth of
related data between two nodes for an extended period of
time. Data transfers with these characteristics are sometimes
referred to as elephant flows. Because of the amount of data
in the elephant flow and the amount of time it takes to

10

15

20

25

30

35

40

45

50

55

60

65

2

forward the data, it may be advantageous to adjust the
forwarding strategy used by one or more of the network
switching devices that are forwarding the network traffic
associated with the elephant flow. However, a precursor to
adjusting the forwarding strategy to adapt to an elephant
flow is the detection of the existence of the elephant flow.
Accordingly, it would be desirable to provide improved
systems and methods for detecting elephant flows.

SUMMARY

According to one embodiment, a switching device
includes one or more ports, a memory, and a control unit
coupled to the ports and the memory. The control unit is
configured to detect storage locations information included
in one or more first messages received for forwarding on one
or more of the ports. The storage locations information
identifies a storage node and is forwarded to a computing
device. The control unit is further configured to detect
opening of a connection between the computing device and
the storage node based on one or more second messages
received for forwarding on one or more of the ports, and
determine identifying characteristics of an elephant flow
based on information associated with the connection.

According to another embodiment, a method of managing
a switching device includes detecting storage locations
information included in one or more first messages received
for forwarding at the switching device. The storage locations
information identifies a storage node and is forwarded to a
computing device. The method further includes detecting
opening of a connection between the computing device and
the storage node based on one or more second messages
received for forwarding at the switching device, determining
identifying characteristics of an elephant flow based on
information associated with the connection, receiving one or
more network packets at the switching device, determining
whether the network packets are associated with the
elephant flow based on the identifying characteristics, and
forwarding the network packets using an altered forwarding
strategy when the network packets are associated with the
elephant flow. The first and second messages and the net-
work packets are received on ports of the switching device.

According to another embodiment, an information han-
dling system includes a switching device. The switching
device includes one or more ports, a memory, and a control
unit coupled to the ports and the memory. The control unit
is configured to detect storage locations information
included in one or more first messages received for forward-
ing on one or more of the ports. The first messages are
exchanged between a Hadoop client on a computing device
and a name node of a Hadoop distributed file system (HDFS)
or the Hadoop client and a first data node of the HDFS. The
storage locations response identify a second data node of the
HDEFS. The control unit is further configured to detect
opening of a connection between the Hadoop client or a
storage module of the first data node and a storage module
of the second data node based on one or more second
messages received for forwarding on one or more of the
ports, determine identifying characteristics of an elephant
flow based on information associated with the connection,
determine whether one or more network packets received for
forwarding on one or more of the ports are associated with
the elephant flow based on the identifying characteristics,
and forward the network packets using an altered forwarding
strategy when the network packets are associated with the
elephant flow.

US 9,461,901 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of a distributed computing
system according to some embodiments.

FIG. 2 is a simplified diagram of a method of performing
a HDFS write operation according to some embodiments.

FIG. 3 is a simplified diagram of a method of elephant
flow handling according to some embodiments.

FIG. 4 is a simplified diagram of a computing device
according to some embodiments.

In the figures, elements having the same designations
have the same or similar functions.

DETAILED DESCRIPTION

In the following description, specific details are set forth
describing some embodiments consistent with the present
disclosure. It will be apparent, however, to one skilled in the
art that some embodiments may be practiced without some
or all of these specific details. The specific embodiments
disclosed herein are meant to be illustrative but not limiting.
One skilled in the art may realize other elements that,
although not specifically described here, are within the
scope and the spirit of this disclosure. In addition, to avoid
unnecessary repetition, one or more features shown and
described in association with one embodiment may be
incorporated into other embodiments unless specifically
described otherwise or if the one or more features would
make an embodiment non-functional.

For purposes of this disclosure, an IHS may include any
instrumentality or aggregate of instrumentalities operable to
compute, classify, process, transmit, receive, retrieve, origi-
nate, switch, store, display, manifest, detect, record, repro-
duce, handle, or utilize any form of information, intelli-
gence, or data for business, scientific, control, entertainment,
or other purposes. For example, an IHS may be a personal
computer, a PDA, a consumer electronic device, a display
device or monitor, a network server or storage device, a
switch router or other network communication device, or
any other suitable device and may vary in size, shape,
performance, functionality, and price. The IHS may include
memory, one or more processing resources such as a central
processing unit (CPU) or hardware or software control logic.
Additional components of the IHS may include one or more
storage devices, one or more communications ports for
communicating with external devices as well as various
input and output (I/0O) devices, such as a keyboard, a mouse,
and a video display. The IHS may also include one or more
buses operable to transmit communications between the
various hardware components.

FIG. 1 is a simplified diagram of a distributed computing
system 100 according to some embodiments. As shown in
FIG. 1, distributed computing system 100 includes a Hadoop
Distributed File System (HDFS) HDFS 110. In some
examples, HDFS 110 may provide a file storage system that
stores data in a fashion suitable for large data sets and may
also support data mining. In some examples, HDFS 110 may
use a distributed storage system wherein multiple copies of
each stored block are replicated across storage nodes for
redundancy and parallel access with a write-once, read many
access pattern.

In some embodiments, HDFS 110 may further support
processing of the data stored therein using the map-reduce
paradigm. The map-reduce paradigm allows for processing
of vast amounts of data in-parallel on large clusters of
commodity hardware in a reliable, fault-tolerant manner.
HDEFS 110 typically stores multiple copies of data in large

10

15

20

25

30

35

40

45

50

55

60

4

data blocks. In some examples, the data blocks in HDFS 110
may be 64 Megabytes (MB) in size and the replication factor
for each block may be three, meaning that three copies of
each HDFS block are stored by HDFS 110. As shown in
FIG. 1, HDFS 110 may include at least two types of
components, a name-node 120 and one or more data-nodes
131-139.

As shown in FIG. 1, name node 120 and data nodes
131-139 may form an HDFS cluster. In some embodiments,
one name node 120 may be centralized and help supervise
and/or manage data nodes 131-139. Although a specific
configuration of name node 120 and data nodes 131-139 is
shown, it is understood that the displayed arrangement of the
name node 120 and data nodes 131-139 in FIG. 1 is for
exemplification purposes only and that HDFS 110 or and
HDFEFS cluster may include more than one name node and/or
any number of data nodes in any other reasonable topology.

In some embodiments, the name node 120 may be respon-
sible for meta-data management of the data stored in HDFS
110, which may include information such as permissions,
file sizes, block storage information, and/or the like. In some
examples, name node 120 may be a server, a computing
device, a cluster, within a virtual machine, and/or the like.
Name node 120 may be coupled to a network 140 using an
edge switch 151. In some examples, the name node 120 may
also be referred to as a master server for HDFS 110.

In some examples, a storage application programming
interface (API) may be used to access name node 120 and
support storage operations for HDFS 110. In some
examples, name node 120 may delegate some or all of
storage operations to data nodes 131-139. In some examples,
a client 160 may make storage requests by exchanging one
or more messages with name node 120. In some examples
the one or more messages may be part of a message passing
protocol such as API calls, remote procedure call (RPC),
web services, and/or the like. In some embodiments, name
node 120 may distribute the storage and retrieval of data
from HDFS 110 to data nodes 131-139. In some examples,
the name node 120 may receive storage requests. In some
examples, the storage requests may include requests for
portions of the meta-data stored by name node 120.

In some embodiments, edge switches 151-159 and/or 170
may facilitate communication between name node 120 and
data nodes 131-139. In some examples, each of the edge
switches 151-159 and/or 170 may be a switch, a hub, a
bridge, a router, and/or the like. In some examples, each of
the edge switches 151-159 and/or 170 may be top of rack
switches, blade switches, and/or the like. As shown in the
examples of FIG. 1, in some examples, data nodes 131 and
132 are each be coupled to an edge switch 152 and edge
switch 159 is coupled to data node 139. In some embodi-
ments, name node 120 and data nodes 131-139 may be
coupled to network 140 using any number of edge switches,
including some examples where one edge switch couples
name node 120 and edge switches 131-139 to network 140.
In some examples, when one edge switch is used, the
messages between name node 120 and data nodes 131-139,
may not be forwarded over the network 140. Although a
specific configuration of edge switches 151-159 and 170,
name node 120, and data nodes 131-139 is shown, it is
understood that the topology of the edge switches 151-159
and 170, name node 120, and data nodes 131-139 as shown
in FIG. 1 is for exemplification purposes only and that an
HDEFS 110 or HDFS cluster may use other topologies.

In some embodiments, data nodes 131-139 may be
responsible for storing the HDFS blocks in the native file
system using in the respective data node 131-139. In some

US 9,461,901 B2

5

embodiments, each of the data nodes 131-139 may include
one or more processors and memory configured to execute
hardware and/or software that implements a Hadoop storage
module. In some embodiments, each of the data nodes
131-139 may further include one or more storage devices
coupled to the one or more processors. Each of the one or
more storage devices may include any kind of storage
medium or machine-readable media suitable for storage of
HDFEFS blocks. Each of the storage devices may include one
or more physical and/or logical volumes, may support a file
system, and/or the like. In some examples, the file system
may be a local file system, a distributed file system, and/or
the like. Some common forms of machine readable media
suitable for the storage devices may include floppy disk,
flexible disk, hard disk, magnetic tape, any other magnetic
medium, CD-ROM, any other optical medium, RAM,
PROM, EPROM, FLLASH-EPROM, any other memory chip
or cartridge, and/or any other medium from which a pro-
cessor or computer is adapted to read and/or the like. In
some examples, each of the data nodes 131-139 may be
further coupled to one or more storage devices using a
network such as network 140. In some examples, each of the
storage devices may be any kind of network accessible
storage including a storage area network (SAN), a network-
attached storage (NAS), a database server, and/or the like.

In some embodiments, network 140 may be any kind of
network including a local area network (LAN), such as an
Ethernet, and/or a wide area network (WAN), such as the
internet and may vary in complexity from a single switching
device operating in relative isolation to large networks of
interconnected switching devices. In some examples, each
of the switching devices may be switches, hubs, bridges,
routers and/or the like and need not all be the same type of
device. The interconnected switching devices may be in
close proximity to each other or separated by great distances
both physically and as distance is measured in computer
networking terms. The interconnected switching devices
may also work together in a closely cooperative fashion or
in a loose weakly coupled fashion. In some examples, the
network 140 may also include a variety of hardware and
software components that may be configured to process,
store, and communicate information based on requests from
of a client 160 and various applications. In some embodi-
ments, network 140 may include a network controller, such
as a software defined networking (SDN) controller for
managing the configuration of the switching devices in
network 140 and/or the supervision of one or more forward-
ing strategies used within network 140.

In some examples, a client, such as client 160 may be a
server or computer running software, such as client software
(e.g. a Hadoop client), that allows a computer, mobile
device, tablet, PDA, Satellite phone, video game console, or
other device to connect to a network 140 and/or use the
storage services of HDFS 110. Although not shown in FIG.
1, clients other than client 160 may also be coupled to
network 140 and HDFS 110 via one or more edge switches.
In some examples, client 160 may make storage requests by
exchanging one or more messages with name node 120
and/or data nodes 131-139. In some examples the one or
more messages may be part of a message passing protocol
such as API calls, RPC, web services, and/or the like.

Because of the large size of storage blocks in HDFS (e.g.,
typically 64 MB), the writing of blocks or the appending of
data to existing blocks by clients, such as client 160, in
HDFS 110 often results in flows of network traffic between
client 160 and one of the data nodes 131-139 that use a
significant amount of bandwidth over an extended period of

30

35

40

45

50

55

6

time. These flows of network traffic are sometimes referred
to as elephant flows. As the data for a given block is being
written by client 160 to one of the data nodes 131-139, it
may be forwarded by client 160 to edge switch 170 where
it is forwarded through network 140 to the one of the edge
switches 152-159 coupling the one of the data nodes 131-
139 to network 140. As the data is forwarded by the edge
switches 170 and 152-159 and the network switching
devices in network 140, this forwarding of data may con-
sume a significant amount of resources in each of these edge
switches and network switching devices. Thus, it may be
advantageous to detect the elephant flow associated with the
writing of this data and make adjustments to the forwarding
strategy used by the edge switches 170 and/or 152-159
and/or the network switching devices in network 140 in
order to improve the efficiency with which the data in the
elephant flow is forwarded and/or to reduce disruptions in
other network traffic being forwarded by edge switches
152-159 and/or 170 and/or the network switching devices of
network 140.

In some embodiments, edge switches 152-159 and/or 170
and/or the network switching devices of network 140 may
make one or more adjustments to create the forwarding
strategy for the elephant flow. In some examples, the adjust-
ments may include one or more of the following: increasing
the bandwidth allocated to network packets associated with
the elephant flow, finding one or more alternate paths for the
network packets associated with the elephant flow and/or
network packets not associated with the elephant flow,
implementing and/or activating one or more quality of
service (QoS) mechanisms, and/or the like. In some
examples, the QoS mechanisms may include bandwidth
reservation, priority queuing, and/or the like. In some
examples, the QoS features may be configured using pro-
tocols such as the Resource Reservation Protocol (RSVP),
Multiprotocol Label Switching (MPLS), Asynchronous
Transfer Mode (ATM), and/or the like.

In some examples, the movement of data between client
160 and the one of the data nodes 131-139 may not be the
only elephant flow associated with a storage operation
initiated by client 160. Because HDFS typically stores
blocks in multiple data nodes based on the replication factor,
one or more additional copies of the data are transferred to
others of the data nodes 131-139 resulting in further
elephant flows through the edge switches 152-159 and 170
and network 140. Thus, it would be advantageous to detect
these elephant flows as well and adjust the forwarding
strategy of at least those portions of the edge switches
152-159 and 170 and the switching devices of network 140
that are forwarding the network packets of those elephant
flows.

Consider as an example, the case where client 160 is
writing data associated with an HDFS block to data storage
devices associated with data node 132. Before the writing of
the data begins, client 160 and data node 132 may exchange
one or more messages to create a connection between the
Hadoop client in client 160 and the HDFS storage module in
data node 132. For example, the Hadoop client and the
HDEFS storage module may create a Transport Control
Protocol (TCP) connection between themselves based on the
IP addresses of client 160 and data node 132 and the TCP
ports associated with the Hadoop client and the HDFS
storage module. As the data in the elephant flow is trans-
ferred between client 160 and data node 132, each of the
network packets may include TCP and Internet Protocol (IP)
headers with the two IP addresses and the two TCP ports. In
addition, the edge switches 170 and 152, as well as the

US 9,461,901 B2

7

switching devices in network 140, may be able to detect the
packets by inspecting the TCP and IP headers of packets
being forwarded and apply the forwarding strategy for the
elephant flow when a matching set of IP addresses and TCP
ports is detected. A similar pattern of IP addresses and TCP
ports may also be associated with the additional elephant
flows that develop when the data in the block is being
written is being replicated to others of the data nodes
131-139.

Before the edge switches 152-159 and/or 170 and/or the
switching devices in network 140 may implement the for-
warding strategy for the elephant flow, the identifying char-
acteristics of the elephant flow should be known to the edge
switches 152-159 and/or 170 and/or the switching devices of
network 140. In the examples above, this may include
knowing the IP addresses and TCP ports associated with the
elephant flow. There are several approaches to identifying
elephant flows and determining the corresponding identify-
ing elements.

A first approach may include enhancing the Hadoop client
used by client 160 and/or the HDFS storage modules in
name node 120 and/or data nodes 131-139 to notify the edge
switches 151-159 and 170 and/or the switching devices of
network 140 before a Hadoop write operation is about to
begin. This notification, however, is not very practical as it
violates the abstraction principles of layering in a network as
it would require the Hadoop client and the HDFS storage
modules to become aware of the intervening network cou-
pling them.

Another approach may be to include packet snooping by
the edge switches 151-159 and 170 and/or the switching
devices of network 140 to recognize a recurring pattern of
network packets between the same two IP addresses and
TCP ports. For example, one or more heuristic rules may be
used to detect one or more combinations of quantity, inter-
val, periodicity, and/or the like among the network packets
with the same IP addresses and TCP ports in the TCP and IP
headers. The difficulty with using heuristic rules, however, is
that they may be slow to detect an elephant flow because
they may not be applied until after the elephant flow is in
operation, thus making the adjustments to the forwarding
strategy applicable to a portion of the elephant flow. In
addition, the heuristic rules may result in failure to detect
one or more elephant flows and/or detecting as an elephant
flow a flow that is not an elephant flow resulting in ineffec-
tive and/or inappropriate adjustments to the forwarding
strategy used by the edge switches 151-159 and 170 and/or
the switching devices of network 140.

Accordingly, it would be advantageous to implement an
elephant flow detection approach that may detect an
elephant flow before network packets from the elephant flow
are sent to the edge switches 151-159 and 170 and/or the
switching devices of network 140 while also avoiding and/or
reducing the false positives and/or false negatives of heu-
ristic methods. One such approach may be determined for
HDFS write operations by more closely examining the
various exchanges and message passing that occur during
HDEFS write operations.

FIG. 2 is a simplified diagram of a method of performing
a HDFS write operation 200 according to some embodi-
ments. In some embodiments, one or more of the processes
205-255 of method 200 may be implemented, at least in part,
in the form of executable code stored on non-transient,
tangible, machine readable media that when run by one or
more processors (e.g., one or more processors in client 160,
name node 120, data nodes 131-139, and/or edge switches

10

15

20

25

30

35

40

45

50

55

60

65

8

151-159 and/or 170) may cause the one or more processors
to perform one or more of the processes 205-255.

At a process 205, a client makes a storage request to a
name node. In some embodiments, a client, such as client
160, may make or initiate a storage request with a file
system, such as HDFS 110, through a storage controller for
the file system. In the examples of FIG. 1, name node 120
may be the storage controller for HDFS 110. In some
examples, the storage request may be a request to create and
write data to a new block and/or to append data to a
previously created block. In the examples of FIG. 1, client
160 may make the storage request to HDFS 100 by exchang-
ing one or more messages to name node 120. In some
examples, the one or more messages may be used to activate
the Hadoop storage module API supported by name node
120, execute one or more RPCs, initiate a web service,
and/or the like. In some examples, the Hadoop client in
client 160 may decide to make the storage request after the
Hadoop client has collected sufficient data from one or more
sources and decides that the accumulated data is to be stored
in a HDFS block. The messages may be transmitted over one
or more network links and through one or more switching
devices in a network. Referring again to the examples of
FIG. 1, the messages of process 205 may pass through edge
switch 170, network 140, and edge switch 151 as they are
forwarded between client 160 and name node 120. In some
examples, when client 160 and name node 120 use the same
edge switch (e.g., when edge switch 170 and edge switch
151 are the same edge switch), the messages may not be
forwarded through network 140.

At a process 210, the name node validates the storage
request and replies. When name node 120 receives the
storage request made during process 205, name node 120
examines the storage request and validates that it is a storage
request name node 120, and HDFS 110, may handle. In
some examples, this validation may include one or more
operations such as determining whether client 160 has
sufficient permission(s) for the storage request, HDFS 110
has sufficient available storage to handle the request, one or
more parameters of the storage request are acceptable,
and/or the like. Once name node 120 determines the storage
request may be handled, name node 120 responds to the
storage request by sending one or more messages back to
client 160 through edge switch 151, network 140, and edge
switch 170. The response from name node 120 may notify
client 160 as to whether client 160 may proceed with the
storage request.

At a process 215, the client requests storage locations
information from the name node. After client 160 receives
the response from name node 120 approving the storage
request made during process 205, client 160 requests infor-
mation identifying the storage locations to be used for the
data to be written to the HDFS block. Because name node
120 maintains general supervisory and management control
over HDFS 110, name node 120 may be responsible for
determining which of the data nodes 131-139 is storing the
first copy and the replicas of the HDFS block. Consequently,
client 160 sends the request for the storage locations infor-
mation to name node 120. Similar to the storage request of
process 205, client 160 may request the storage locations
information by exchanging one or more messages with name
node 120. In some examples, the one or more messages may
be associated with one or more API calls, RPCs, web
services, and/or the like. Also, the one or more messages
may be forwarded between client 160 and name node 120
through edge switches 170 and 151 as well as network 140.

US 9,461,901 B2

9

At a process 220, the name node responds with the storage
locations information. In response to the request made by
client 160 during process 215, name node 120 may return
storage locations information to client 160 via one or more
messages forwarded through edge switches 151 and 170 and
network 140. In some examples, the storage locations infor-
mation may include, at least in part, an IP address of the data
node selected by name node 120 as that data node from
among data nodes 131-139 that is to store a first copy of the
data from the storage request made during process 205. In
some examples, the storage locations information may also
include IP addresses of the one or more data nodes selected
by name node 120 as the data nodes 131-139 that are to store
the corresponding replicas of the HDFS block. In some
examples, the storage locations information may further
include one or more logical unit numbers, volume numbers,
block identifiers, and/or the like.

At a process 225, the client opens a connection with a first
data node. Using the storage locations information provided
by name node 120 during process 220, client 160 opens a
connection with a first one of the data nodes 131-139
identified as storing the first copy of the HDFS block. In
some examples, the IP address of the first data node is used
to identify the first data node. In some examples, the
connection is a TCP connection identified by the IP
addresses of client 160 and the first data node as well as a
TCP port of the Hadoop client on client 160 and a TCP port
of the storage module on the first data node. In some
examples, client 160 may open the connection with the first
data node by exchanging one or more messages with the first
data node through edge switch 170, network 140, and an
edge switch coupling the first data node to network 140 (e.g.,
edge switch 152 when the first data node is data node 132).
In some examples, when the first data node and client 160
are both coupled to network 140 using edge switch 170, the
one or more messages may be exchanged through edge
switch 170 without having to be forwarded through network
140. In some examples, when the connection is a TCP
connection, the one or more messages may include one or
more SYN, SYN/ACK, and ACK messages.

At a process 230, the client transfers data to the first data
node. Once the connection is opened during process 225,
client 160 may use the connection to transfer one or more
network packets with data for storage by the first data node.
Upon receiving the data, the first data node may store the
data as one or more blocks of its local file system that is
maintained on one or more storage devices associated with
the first data node. When the data being transferred between
client 160 and the first data node is a significant portion of
an HDFS block, the data transfer is an elephant flow, and
client 160 may send the data using a large number of data
packets to the first data node over an extended period of
time. Because each of the network packets is forwarded
from client 160 to the first data node using the connection,
both the TCP and IP headers of each of the network packets
may include the same IP addresses for client 160 and the first
data node as well as the same TCP ports for the Hadoop
client in client 160 and the storage module in the first data
node. This allows each of the network packets that are part
of the data transfer to be identified as part of the same
elephant flow. As with the messages exchanged during
process 225, the network packets are forwarded from client
160 to the first data node using edge switch 170, the edge
switch coupling the first data node to network 140, and
network 140; except for the case where client 160 and the
first data node use the same edge switch so that the network

25

40

45

10

packets may be forwarded though edge switch 170 without
being forwarded through network 140.

At a process 235, the client closes the connection with the
first data node. When client 160 finishes transferring the data
to be written to the first copy of the HDFS block during
process 230, the client 120 may close the connection with
the first data node to indicate that the transfer of data is
complete. In some examples, the connection may be closed
by exchanging one or more messages between client 160
and the first data node through edge switch 170, network
140, and the edge switch coupling the first data node to
network 140 (e.g., edge switch 152 when the first data node
is data node 132). In some examples, when the connection
is a TCP connection the one or more messages may include
one or more FIN messages. In some examples, when the
connection is closed, this indicates the end of the elephant
flow.

At a process 240, the client transmits storage locations
information to the first data node. After the connection is
closed during process 235 indicating that the client has no
more data to write to a first copy of the HDFS block, the
process of replicating the HDFS block based on the repli-
cation factor for HDFS 110 begins. In some embodiments,
client 160 may be responsible for transmitting the storage
locations information associated with a replica of the HDFS
block to the first data node. In some examples, the storage
locations information may include, at least in part, an IP
address of the data node selected by name node 120 as that
data node from among data nodes 131-139 that is to store the
replica of the HDFS block. In some examples, the storage
locations information may further include one or more
logical unit numbers, volume numbers, block identifiers,
and/or the like. In some embodiments, the storage locations
response from process 220 may include the same storage
locations request of process 240.

At a process 245, the first data node opens a connection
with a second data node. Using the storage locations infor-
mation provided during process 245, the first data node
opens a connection with the second data node as identified
by the storage locations information. In some examples, the
IP address of the second data node is used to identify the
second data node. In some examples, the connection may be
a TCP connection identified by the IP addresses of the first
and second data nodes as well as TCP ports of the storage
modules in the first and second data nodes. In some
examples, the first data node may open the connection with
the second data node by exchanging one or more messages
with the second data node through the edge switch coupling
the first data node to network 140, network 140, and an edge
switch coupling the second data node to network 140 (e.g.,
edge switch 159 when the second data node is data node
139). In some examples, when the first and second data
nodes are both coupled to network 140 using the same edge
switch (e.g., edge switch 152), the one or more messages
may be exchanged through the same edge switch and may
not be forwarded through network 140. In some examples,
when the connection is a TCP connection, the one or more
messages may include one or more SYN, SYN/ACK, and
ACK messages.

At a process 250, the first data node transfers data to the
second data node. Once the connection is opened during
process 245, the first data node may use the connection to
transfer one or more network packets with data for storage
by the second data node in the replica of the HDFS block.
Upon receiving the data, the second data node may store the
data as one or more blocks of its local file system that is
maintained on one or more storage devices associated with

US 9,461,901 B2

11

the second data node. When the data being transferred
between the first data node and the second data node is a
significant portion of an HDFS block, the data transfer is an
elephant flow, and the first data node may send the data using
a large number of data packets to the second data node over
an extended period of time. Because each of the network
packets is forwarded from the first data node to the second
data node using the connection, both the TCP and IP headers
of each of the network packets may include the same IP
addresses for the first and second data nodes as well as the
same TCP ports for the storage modules in the first and
second data nodes. These common header elements allow
each of the network packets that are part of the data transfer
to be identified as part of the same elephant flow. As with the
messages exchanged during process 245, the network pack-
ets are forwarded from the first data node to the second data
node using the edge switch coupling the first data node to
network 140, the edge switch coupling the second data node
to network 140, and network 140 except for the case where
the edge switch coupling the first and second data nodes to
network 140 is a same edge switch (e.g., edge switch 152)
so that the network packets may be forwarded though the
same edge switch and may not be forwarded through net-
work 140.

At a process 255, the first data node closes the connection
with the second data node. When the first data node finishes
transferring the data to be written to the replica of the HDFS
block during process 250, the first data node may close the
connection with the second data node to indicate that the
transfer of data for the replica is complete. In some
examples, the connection may be closed by exchanging one
or more messages between the first data node and the second
data node through the edge switch coupling the first data
node to network 140, network 140, and the edge switch
coupling the second data node to network 140. In some
examples, when the connection is a TCP connection the one
or more messages may include one or more FIN messages.
In some examples, when the connection is closed, this
indicates the end of the elephant flow associated with the
replica.

In some embodiments, processes 240-255 may be
repeated to copy the data for each of any additional replicas
of the HDFS block as determined by the replication factor
for HDFS 110. In some examples, when the replication
factor for HDFS 110 is three, processes 240-255 would be
repeated a second time to copy the data to a second replica
(i.e., to make a third copy of the HDFS block). In some
examples, processes 240-255 may be repeated by the second
data node as it sends data for a replica of the HDFS block
on a third data node that is different from both the first and
second data nodes.

Careful observation of the processes of method 200
reveals that the edge switches in distributed computing
system 100 are able to detect each of the elephant flows
created by method 200 before data is transferred using the
respective elephant flow during processes 230 and 250 as
well as to detect the ending of the elephant flows during
processes 235 and 255. For example, each of the elephant
flows may be detected by observing transfer of storage
locations information followed by the opening of a connec-
tion to transfer the data to the data node identified by the
storage locations information. Consider the case of the first
elephant flow between client 160 and the first data node used
to store the first copy of the data in an HDFS block. Each of
the messages exchanged by client 160 and name node 120
during process 220 used by client 160 to determine the
storage locations information are forwarded through edge

10

15

20

25

30

35

40

45

50

55

60

65

12

switch 170, whether or not client 160 and name node 120 are
coupled to network 140 using the same edge switch. Addi-
tionally, each of the messages exchanged by client 160 and
the first data node to open the connection during process 225
are forwarded through edge switch 170 as well as each of the
network packets sent in the first elephant flow. Further, each
of the messages exchanged by client 160 and the first data
node to close the connection during process 235 are for-
warded through edge switch 170. Thus, edge switch 170 is
able to detect and observe each of the network messages and
packets associated with formation, use, and ending of the
first elephant flow. Similarly, the edge switch coupling the
first data node to network 140 forwards each of the messages
and data packets exchanged during processes 240-255 asso-
ciated with the second elephant flow used to make the
replica of the HDFS block.

FIG. 3 is a simplified diagram of a method 300 of elephant
flow handling according to some embodiments. In some
embodiments, one or more of the processes 310-370 of
method 300 may be implemented, at least in part, in the form
of executable code stored on non-transient, tangible,
machine readable media that when run by one or more
processors (e.g., one or more processors in edge switches
151-159 and/or 170) may cause the one or more processors
to perform one or more of the processes 310-370. In some
embodiments, process 330 is optional and may be omitted.

At a process 310, storage locations information is
detected. In some examples, the storage locations informa-
tion may correspond to the storage locations information
transmitted during processes 220 and/or 240. The storage
locations information may be forwarded by the edge switch
coupling the client and/or a data node to the network. In
some embodiments, the edge switch may determine that the
messages the edge switch is forwarding are associated with
the storage locations information using a deep packet
inspection approach. In some examples, the edge switch
may perform deep packet inspection by looking at the
headers and/or bodies of the messages, packets, and/or
datagrams included in the messages being forwarded to look
for specific types of header field types and/or values as well
as payload patterns indicative of the transfer of storage
locations information. In some examples, the deep packet
inspection may include examining the headers and bodies of
layer 4 (e.g., TCP) and layer 5 (e.g., application) packets
and/or datagrams. In some examples, when the storage
locations request is made through a RPC, the deep packet
inspection may detect the headers for a RPC as well as the
request for the specific remote procedure associated with the
transfer of the storage locations information. In some
examples, when the storage locations information is asso-
ciated with a web service call, the deep packet inspection
may detect the headers for a web service call as well as the
request for the specific web service. In some examples,
when the storage locations request is associated with a
specific protocol, the deep packet inspection may detect the
headers for the specific protocol as well as the request name
and/or parameters associated with the storage locations
information. In some examples, the deep packet inspection
may include parsing eXtensible Markup Language (XML)
included in the messages being exchanged, such as used by
the Simple Object Access Protocol (SOAP). In addition, as
part of the deep packet inspection, the edge switch may
parse one or more fields of forwarded messages to determine
an identity of the data node designated by the name node in
the storage locations information. In some examples, the
identity of the data node may be indicated by an IP address
for the data node.

US 9,461,901 B2

13

At a process 320, opening of a connection is detected.
Once the edge switch has detected the storage locations
information during process 310, the edge switch may begin
looking for the opening of a corresponding connection to the
data node identified in the storage locations information. In
some examples, the opening of the connection may corre-
spond to the opening of the connection of processes 225
and/or 245. In some embodiments, deep packet inspection
may be used by the edge switch to detect the headers and
bodies associated with the opening of the connection. In
some examples, when the connection is a TCP connection,
the deep packet inspection may detect the pattern of TCP
messages between the IP address associated with the client
and/or a data node and the data node identified by the storage
locations information. In some examples, the TCP messages
may include one or more SYN, SYN/ACK, and/or ACK
messages. In some examples, the deep packet inspection
may also determine the TCP ports associated with the
connection. Once the IP addresses and the TCP ports are
known, these may be used to identify later network packets
associated with the connection and which are part of a
corresponding elephant flow. In some examples, the edge
switch may also record the identifying characteristics of the
elephant flow in one or more data structures, databases, flow
tables, and/or the like.

At an optional process 330, other devices are notified of
the elephant flow. Because the edge switch detecting the
elephant flow through processes 310 and 320 may only
generally adjust its own forwarding strategy, it may be
useful for the edge switch to communicate its detection of
the elephant flow with other devices in the network. In some
examples, the other devices may include one or more other
edge switches, such as the edge switch coupling the data
node identified by the storage locations response. In some
examples, the other devices may be neighboring devices to
the edge switch. In some examples, when the network
includes a network controller, such as a SDN controller, the
edge switch may notify the network controller. In some
examples, the edge switch may notify the other devices
using routing, forwarding, and/or QoS protocols such as
RSVP, MPLS, and/or the like. In some embodiments, pro-
cess 340 may not be used when the same edge switch
couples the client and the data node identified by the storage
locations response to the network because the edge switch is
able to forward each of the network packets in the elephant
flow without using other switching devices in the network.

At a process 340, the edge switch is configured for the
elephant flow. Once the edge switch has detected the
elephant flow using processes 310 and 320, the edge switch
may adjust its forwarding strategy to more effectively handle
and/or forward the network packets in the elephant flow
and/or to reduce disruptions to network packets associated
with other flows. In some examples, the adjustments may
include one or more of the following: increasing the band-
width allocated to network packets associated with the
elephant flow, finding one or more alternate paths for the
network packets associated with the elephant flow and/or
network packets not associated with the elephant flow,
implementing and/or activating one or more QoS features,
and/or the like. In some examples, the QoS features may
include bandwidth reservation, priority queuing, and/or the
like. In some embodiments, the configuration to be used by
the edge switch may be received from the network controller
and/or through the routing, forwarding, and/or QoS proto-
cols such as RSVP, MPLS, and/or the like.

At a process 350, data for the elephant flow is forwarded.
As the client and/or a data node and the data node identified

25

40

45

65

14

by the storage locations response begin exchanging data
using the connection detected during process 320, the edge
switch may forward the corresponding network packets
using the forwarding strategy configured during process
340. In some examples, the edge switch may detect the
network packets that are part of the elephant flow by parsing
the network packets using deep packet inspection to detect
the pattern of headers and/or the like that identify network
packets from the elephant flow. In some examples, when the
connection is a TCP connection, the deep packet inspection
may identify packets with IP and TCP headers including the
IP addresses and TCP ports associated with the elephant
flow.

At a process 360, closing of the connection is detected.
Once the data is transferred using the elephant flow, the
client may close the connection detected during process 330.
In some examples, the closing of the connection may
correspond to the closing of the connection of processes 235
and/or 255. In some examples, the edge switch may detect
the closing of the connection by again parsing the network
packets it is forwarding by using deep packet inspection. In
some examples, when the connection is a TCP connection,
the deep packet inspection may identify the closing of the
connection by observing one or more FIN messages with IP
and TCP headers corresponding to the IP addresses and TCP
ports associated with the elephant flow.

At a process 37, the end of the elephant flow is noted.
Once the edge switch detects the closing of the connection
during process 360, the edge switch may conclude that the
elephant flow is ended and any altered forwarding policy
configured during process 350 may be rolled back and/or
removed. In some embodiments, the other devices may also
be notified of the end of the elephant flow using a process
similar to process 330 so that the other devices may be able
to adjust their forwarding strategies as well.

In some embodiments, processes 310-370 may be
repeated to detect and manage additional elephant flows
being forwarded through the edge switch. In some examples,
processes 310-370 may also be performed in parallel and/or
multi-threaded fashion when multiple elephant flows are
being concurrently detected and/or managed by the edge
switch.

FIG. 4 is a simplified diagram of a computing device 400
according to some embodiments. In some embodiments,
computing device 400 may be consistent with the servers,
computing devices, and/or switching devices associated
with name node 120, data nodes 131-139, edge switches
151-159, client 160, and/or edge switch 170. As shown in
FIG. 4, computing device 400 includes a control unit 410
coupled to memory 420. Control unit 410 may control the
operation of computing device 400. In some examples,
control unit 410 may include one or more processors, central
processing units, virtual machines, microprocessors, micro-
controller, application specific integrated circuits (ASICs),
field programmable gate arrays (FPGAs), and/or the like.

Memory 420 may be used to store one or more modules
or applications 430 and their corresponding data structures.
In some embodiments, the one or more applications 430 may
be implemented using software and/or a combination of
hardware and software. Memory 420 may include one or
more types of machine readable media. Some common
forms of machine readable media may include floppy disk,
flexible disk, hard disk, magnetic tape, any other magnetic
medium, CD-ROM, any other optical medium, punch cards,
paper tape, any other physical medium with patterns of
holes, RAM, PROM, EPROM, FLASH-EPROM, any other
memory chip or cartridge, and/or any other medium from

US 9,461,901 B2

15

which a processor or computer is adapted to read. In some
examples, the one or more applications may include a
Hadoop client when computing device 400 is used as part of
client 160, a storage module when computing device 400 is
used as part of name node 120 and/or data nodes 131-139,
routing and/or forwarding modules when computing device
400 is used as part of edge switches 151-159 and/or 170,
elephant flow detection and/or management modules when
computing device 400 is used as part of edge switches
151-159 and/or 170, and/or the like. In some examples, the
applications 430 may be used to perform and/or facilitate the
performance of the processes of methods 200 and/or 300.

In some embodiments, computing device 400 may further
include one or more storage devices 440 for storing one or
more blocks of data 450. In some examples, each of the
storage devices may include one or more physical and/or
logical volumes, may support a file system, and/or the like.
In some examples, the file system may be a local file system,
a distributed file system, and/or the like. Some common
forms of storage devices may include, for example, floppy
disk, flexible disk, hard disk, magnetic tape, any other
magnetic medium, CD-ROM, any other optical medium,
RAM, EPROM, FLASH-EPROM, or other memory chips or
cartridges, and/or any other medium from which a processor
or computer is adapted to read. In some examples, each of
the storage devices may be internally coupled to computing
device 400 as shown in FIG. 4 and/or may be externally
coupled to computing device 400 using cables, drivers,
networks, and/or the like.

Computing device 400 further includes one or more ports
450 for coupling computing device 400 to a network, such
as network 140, and/or other switching devices. Computing
device 400 may receive one or more messages from the
network on ports 450 and may transmit one or more mes-
sages over the network using ports 450. Depending upon the
role of computing device 400 in a computing system,
computing device 400 may have as few as one port and as
many as dozens or more ports. In some examples, when the
computing device 400 is part of name node 120, data nodes
131-139, and/or client 160, the one or more ports may
couple computing device 400 to corresponding edge
switches 151-159 and/or 170. In some examples, when the
computing device 400 is part of edge switches 151-159
and/or 170, the one or more ports may couple computing
device 400 to name node 120, data nodes 131-139, client
160, and/or other network switching devices in network 140.

Some embodiments of name node 120, data nodes 131-
139, edge switches 151-159, client 160, and/or edge switch
170 may include non-transient, tangible, machine readable
media that include executable code that when run by one or
more processors may cause the one or more processors to
perform the processes of methods 200 and/or 300 as
described above. Some common forms of machine readable
media that may include the processes of methods 200 and/or
300 are, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip or car-
tridge, and/or any other medium from which a processor or
computer is adapted to read.

Although illustrative embodiments have been shown and
described, a wide range of modification, change and substi-
tution is contemplated in the foregoing disclosure and in
some instances, some features of the embodiments may be
employed without a corresponding use of other features.
One of ordinary skill in the art would recognize many

20

30

35

40

45

16

variations, alternatives, and modifications. Thus, the scope
of the invention should be limited only by the following
claims, and it is appropriate that the claims be construed
broadly and in a manner consistent with the scope of the
embodiments disclosed herein.

What is claimed is:

1. A switching device comprising:

one or more ports;

a memory; and

a control unit coupled to the ports and the memory, the

control unit being configured to:
detect an elephant flow between a computing device
and a storage node;
receive one or more first network packets at the switch-
ing device;
determine whether the first network packets are asso-
ciated with the elephant flow; and
forward the first network packets as elephant flow
packets when the first network packets are associated
with the elephant flow;
wherein to detect the elephant flow, the control unit is
configured to:
detect storage locations information included in one
or more first messages received for forwarding to
the computing device on one or more of the ports,
the storage locations information including an
address of the storage node and one or more
storage locations within the storage node;
detect subsequent opening of a connection between
the computing device and the storage node based
on one or more second messages received for
forwarding on one or more of the ports; and
determine as identifying characteristics of the
elephant flow, one or more properties that identify
the connection;
wherein to determine whether the first network packets
are associated with the elephant flow, the control unit
is further configured to determine whether charac-
teristics of the first network packets match the iden-
tifying characteristics of the elephant flow.

2. The switching device of claim 1, wherein the control
unit is further configured to store the identifying character-
istics in the memory.

3. The switching device of claim 1, wherein the control
unit is further configured to alter a forwarding strategy used
by the switching device to forward the first network packets
associated with the elephant flow.

4. The switching device of claim 3, wherein the control
unit is further configured to:

receive the first network packets on one or more of the

ports; and

forward the first network packets on one or more of the

ports using the altered forwarding strategy.

5. The switching device of claim 3, wherein the control
unit is further configured to alter the forwarding strategy by
performing one or more tasks selected from a group con-
sisting of increasing a bandwidth allocated to the first
network packets, finding one or more first alternate paths for
the first network packets, finding one or more second
alternate paths for second network packets not associated
with the elephant flow, implementing one or more quality of
service (QoS) mechanisms for the first network packets, and
activating one or more QoS mechanisms for the first net-
work packets.

6. The switching device of claim 3, wherein the control
unit is further configured to detect a closing of the connec-
tion.

US 9,461,901 B2

17

7. The switching device of claim 6, wherein the control
unit is further configured to undo the altering of the for-
warding strategy of the switching device based on the
closing of the connection.

8. The switching device of claim 1, wherein the control
unit is further configured to notify one or more other
switching devices in a network of the determined identifying
characteristics of the elephant flow.

9. The switching device of claim 8, wherein the control
unit is further configured to notify a network controller of
the determined identifying characteristics of the elephant
flow.

10. The switching device of claim 1, wherein:

the connection is a transport control protocol (TCP)

connection; and

the one or more properties that identify the connection

include an internet protocol (IP) address of the com-
puting device, an IP address of the storage node, a TCP
port associated with the computing device, and a TCP
port associated with the storage node.

11. The switching device of claim 1, wherein the com-
puting device is a client or a first data node and the storage
node is a second data node.

12. The switching device of claim 1, wherein one or more
of the first messages are forwarded from a name node.

13. The switching device of claim 1, wherein, the switch-
ing device is configured to couple the computing device to
a network.

14. A method of managing a switching device, the method
comprising:

detecting an elephant flow by detecting storage locations

information included in one or more first messages
received for forwarding by the switching device to a
computing device, the storage locations information
including an address of a storage node and one or more
storage locations within the storage node, detecting
subsequent opening of a connection between the com-
puting device and the storage node based on one or
more second messages received for forwarding at the
switching device, and determining as identifying char-
acteristics of the elephant flow, one or more properties
that identify the connection;

receiving one or more network packets at the switching

device;

determining whether the network packets are associated

with the elephant flow based on the identifying char-
acteristics; and

forwarding the network packets using an altered forward-

ing strategy when the network packets are associated
with the elephant flow;

wherein the first and second messages and the network

packets are received on ports of the switching device.

18

15. The method of claim 14, further comprising sending
the identifying characteristics to one or more other switching
devices in a network.

16. The method of claim 14, further comprising sending

5 the identifying characteristics to a network controller.

17. The method of claim 14, further comprising:

detecting closing of the connection; and

forwarding the network packets without using the altered

forwarding strategy after the connection is closed.
10 18. An information handling system comprising:
a switching device comprising:
one or more ports;
a memory; and
a control unit coupled to the ports and the memory;
15 wherein the control unit is configured to:
detect an elephant flow by detecting storage locations
information included in one or more first messages
received, on one or more of the ports, for forwarding,
the first messages being exchanged between a
20 Hadoop client on a computing device and a name
node of a Hadoop distributed file system (HDFS) or
the Hadoop client and a first data node of the HDFS,
and the storage locations information including an
address of a second data node of the HDFS and one
25 or more storage locations within the second data
node, detecting subsequent opening of a connection
between the Hadoop client or a storage module of the
first data node and a storage module of the second
data node based on one or more second messages
30 received for forwarding on one or more of the ports,
and determining as identifying characteristics of the
elephant flow, one or more properties that identify
the connection;
determine whether one or more network packets
35 received for forwarding on one or more of the ports
are associated with the elephant flow based on the
identifying characteristics; and
forward the network packets using an altered forward-
ing strategy when the network packets are associated
40 with the elephant flow.

19. The information handling system of claim 18,
wherein:

the connection is a transport control protocol (TCP)

connection; and

45 the one or more properties that identify the connection
include an internet protocol (IP) address of the com-
puting device or the first data node, an IP address of the
second data node, a TCP port associated with the
Hadoop client or the storage module of the first data

50 node, and a TCP port associated with the storage
module of the second data node.

#* #* #* #* #*

